Experiment Title Total Reaction Cross Section from the interaction of 6Li ions with 28Si and 197Au.
Experiment Responsible Sobolev Yuri
e-mail address sobolev@ujf.cas.cz
phone +74962154858

Short presentation of the scientific project
--

The direct measurement of the total reaction cross section \(\sigma_R \), and of the different reaction channels as a function of the beam energy, for light weakly bound nuclei 6Li, on different targets like 28Si and 197Au is related to relevant open problems. The measurement of \(\sigma_R \) provides an independent test of the different optical models from the analysis of elastic scattering data, by comparing the corresponding calculated \(\sigma_R \) with the value measured directly. Data on the excitation functions for \(\sigma_R(E) \), elastic, inelastic, breakup cross section, and reaction channels which are accompanied by the strong dissipation of the kinetic energy, are needed, for example, to clarify the influence of breakup and transfer on the fusion process.

We propose to measure the total reaction cross section \(\sigma_R(E) \) of 6Li on 28Si and 197Au targets; and to measure the energy of \(\alpha \)-particles and the yield of \(\alpha \)-production reaction channels, with/without \(\gamma \)-emission, as a function of the beam energy, in the energy region around Coulomb barrier. We plan to use the CPI-modified transmission method together with the 4 \(\pi \)-technique.

Beam time request(unit=8 hours) : 6 units
Desired Period : February 2011

Desired beam properties

Type : 6Li
Energy(MeV) : 32
Intensity(p/nA) : <0.1pnA
Vacuum Requests : no special

Special requirements for detectors, electronics, acquisition system

Desired beam line-channel with the Pb-shield box

Minimal information needed for the radiological risk evaluation:
--
a)Source activity :
b)Use of open sources :
c)Estimate of the residual activity as a result of irradiation :
d)Means of storage/transportation for irradiated targets :