Probing the structure of 95Mo

1Faculty of Physics, University of Sofia ”St. Kliment Ohridski”, Sofia, Bulgaria; 2National Institute for Physics and Nuclear Engineering ”Horia Hulubei”, Magurele, Romania 3Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Science, Sofia, Bulgaria

1 Motivation

94,95Mo nuclei have few neutrons outside the N=50 shell closure and are placed in a region where a transition from spherical to deformed shape is expected to occur. The low-spin states in 94Mo have been successfully described in the framework of the shell model as arising from the $\pi(p_{1/2}, g_{9/2})$ and $\nu(d_{5/2}, s_{1/2}, g_{7/2})$ single particle orbitals. The high-energy transitions, placed on top of the $J = 13\hbar$ state were interpreted as neutron excitations across the N=50 shell gap. The positive-parity states in 95Mo have been interpreted in the framework of the shell model as single-particle configurations coupled to the 94Mo core. In 1998, a negative parity band, consisting of stretched E2 transitions was observed on the top of the 1333-keV level [1]. It has been interpreted as arising from the $\nu h_{11/2}$ configuration. However, to make a more definitive assignment a need of lifetimes measurements has been emphasized [1]. Later, in [2], it has been suggested that the 11/2$^-$ level lies at 1938 keV and decays via a 386-keV transition to the 7/2+ state, which is non-yrast and decays via a branch of transitions to the yrast sequence. The appearance of 11/2$^-$ state at higher energies fits to the lower intensity of the band sequence, based on 11/2$^-$ state with respect to the yrast-sequence of states. And while the positive-parity part of the level scheme of 95Mo is successfully described in the framework of both shell model and vibarional model the negative-parity band remains not well studied. Therefore, with the present proposal we suggest to measure the half-life of the negative-parity band head in 95Mo. The lifetime of the level is directly related to the reduced transition probabilities and give the opportunity to test the nuclear wave function in a region deep bellow N=82, where $\nu h_{11/2}$ is expected to emerge.

2 Half-life estimation

The negative-parity band in 95Mo has a similar structure to the negative-parity band in 97Mo (Fig. 1). Both bands are observed to decay via stretched E2 transitions to the 11/2$^-$ state. The half-life of the 11/2$^-$ state in 97Mo has been measured to be 2.5 (3) ns [3]. It decays via 320-keV E1 transition to the 9/2$^+$ state and via 778-keV M2 transition to the 7/2+ state. Given that the branching ratio is $BR = I_{320}/(I_{320} + I_{778}) = 0.9$ we estimate the partial half-life $T_{1/2}$ on 2.3 ns. The Weisskopf estimates for a stretched E1 320-keV transition is 9.7×10^{-15}s., which leads to a hindrance factor of $F_w = T_{1/2}^{320\gamma}/T_{W.e.} = 2.3 \times 10^5$.

1
Figure 1: Partial level schemes of 95Mo [2] (left) and 97Mo [4] (right)

The half-life of the $11/2^-$ state in 95Mo can be estimated if the state has a similar to the $11/2^-$ state in 97Mo structure. Given that the $11/2^-$ level in 95Mo decays via a branch of transitions with 386-keV E1 transition being the strongest branch the half-life is estimated to be $T_{1/2}^{\text{exp}} = 1/BR \times F_W \times T_{1/2}^{W,e} = 1/0.544 \times 2 \times 10^5 \times 5.6 \times 10^{-15}$ s, i.e. $T_{1/2}^{\text{exp}} = 2 \times 10^{-9}$ s.

Upper limit of $T_{1/2}$ for $11/2^-$ state in 95Mo has also been estimated by NNDC [3] on 6.9 ns. Both values, the calculated in the present proposal and the NNDC value, are within the range of the fast-timing setup in Magurele. In addition to the $11/2^-$ state a number of excited single particle states with $J^\pi = 15/2^+$ to $19/2^+$, which decay by low-energy M1 transition, are estimated to have half-lives of order of few hundreds of picoseconds. The precise value of the half-life will give additional spectroscopic information and will allow a more definitive configuration assignment of the states below the Z=50 shell gap.

3 Experimental Set Up

Lifetimes in the sub-nanosecond range will be measured by using the specially designed system for in-beam fast-timing measurements at NIPNE. It comprises 8 HPGe detectors working in coincidence with 5 LaBr$_3$:Ce detectors [5]. The system is triggered by two LaBr$_3$:Ce fired in coincidence with one HpGe detector. The half-life of the level of interest will be measured by using the time interval between the feeding and de-exciting gamma-rays detected by two of the five LaBr$_3$:Ce detectors under the condition that the cascade is fed by a third transition detected by HpGe detector.

4 Preceding experience

In 2009 and 2010 a cycle of four experiments have been performed at the Tandem accelerator of NIPNE-Magurele, Romania. The aim of the experiments was to measure short-lived states in 103,105,107Cd [6]. The first experiment of the cycle was a test experiment and aimed on the first excited $7/2^+$ state in 107Cd, which has a half-life of 710 ps. In a following experiment, the half-life of the first $7/2^+$ states in the neighbouring 105Cd and 103Cd nuclei have been also
measured. Sample spectra, showing the measured half-times of the $7/2^+$ states are presented at Fig. 2. The $T_{1/2}$ for 105Cd taken from NNDC is 1.75 ns and it has been re-evaluated in our experiment, while the $T_{1/2}$ for the $7/2^+$ state in 103Cd has been measured for the first time.

The NNDC value for $T_{1/2}$ of $11/2^-$ in 107Cd is 71 ns. The half-life of the $11/2^-$ state in 105Cd has been measured for the first time at NIPNE and it has been found to be 142 ps. A sample spectrum is shown on Fig. 3. The half-life of $11/2^-$ in 103Cd has been found to be prompt in our last experiment.

Figure 2: Time spectra for the $7/2^+$ states in 103Cd and 105Cd [6]

5 Beam time estimation

5.1 95Mo experiment

95Mo will be studied via 18O+82Se reaction which has a cross section of 400 mb at beam energies at 68 MeV, as calculated with the CASCADE code. Given that the energy loss of the 68 MeV 18O beam in 82Se target is approximately 3 MeV/(mg/cm2) a target of 9 mg/cm2 thickness will be used. In order to stop the beam in the target the target will be backed with 15 μm of Au.
Then for a current of 100 pnA and for population of 4% of the $11/2^-$ with respect to the first excited state, and given that the LaBr$_3$ detectors, with an intrinsic efficiency of 80% for low-energy γ-rays, are typically placed at 8 cm from the target, a total number of 800 de-exciting γ-rays per second in singles are expected, i.e. 4 counts in the $\gamma - \gamma$ matrix. Then the HpGe gated time spectrum will contain 124 counts per shift, i.e. 2604 counts in a week. Therefore, to obtain enough statistics to determine the half-life of the $11/2^-$ state in 95Mo one week of beam time is requested.

References

[5] N. Marginean et al., submitted