Probing the structure of the doubly-odd nuclei $^{126,128}\text{I}$ through lifetime measurements

1 Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
2 National Institute for Physics and Nuclear Engineering "Horia Nulubei", Bucharest, Romania
3 Department of Nuclear Physics, University of Istanbul, Turkey
4 Faculty of Physics, St. Kliment Ohridski University of Sofia, Bulgaria

Spokespersons: Tsanka Venkova and Daniela Deleanu

Abstract:
The proposed experiment aims to measure the lifetimes of the 8^- and 10^+ states in ^{126}I and ^{128}I. The high spin structure of the iodine nuclei, when approaching the $N = 82$ shell closure, is insufficiently studied. The goal of the experiment is to shed some light on the structure of the nuclei in the $N = 82$ region. Excited states in the nuclei of interest will be populated in the $^{124}\text{Sn}(^6\text{Li},4\text{n})$ and $^{124}\text{Sn}(^7\text{Li},3\text{n})$ reactions. To do the proposed measurement we ask for eight days of beam time.
1 Motivation

The high spin structure of the iodine nuclei, when approaching the $N = 82$ shell closure, is insufficiently studied. In all doubly-odd Iodine nuclei, 10^+ states build on the $\pi h_{11/2} \otimes \nu h_{11/2}$ configurations are expected. Such positive parity states have been tentatively assigned in the $^{116−128}$I nuclei and rotational bands have been observed.

An experiment to identify the high-spin structure of 128I was previously made at the Bucharest Tandem accelerator [1] and the level scheme was considerably extended.

![Figure 1: The level scheme of 128I.](image)

Fourteen levels were newly added and lifetimes of two states were estimated. These two states, $8^- 328$ keV and $10^+ 1605$ keV, decay by emitting γ transitions of almost equal energy, 102 keV. Using the fast timing method, time spectra were obtained for both states which decays emitting the 101 and 102 keV γ rays. The time spectra revealed two clear different structures which supported the existence of the 102 doublet. Because a pulsed beam was used in this experiment, the obtained statistics was not enough to allow an accurate measurement of these lifetimes.

In the negative parity band, from the time spectra of the 102 keV transition depopulating the 328 keV state the lifetime was estimated to be quite high, up to several tens of ns. The short coincidence window limited by the pulsed beam frequency hindered a precise measurement of this lifetime. The 101 keV transition from the positive parity band proved to be a prompt transition with a lifetime lower than 100 ps (less than the method resolution). This implies that 101 kev is a fast M1 transition. The results are also probed with the results of the RDCO method. We propose to precisely measure the lifetime of the $8^- 328$ keV and $10^+ 1605$ keV transitions.
states from 128I by using the fast timing method.

Based on the clear similarities of the 128I and 126I level schemes we also propose to measure the lifetime of the $10^+ 1433$ keV state from 126I. In a previous work (see the 2002 ANU Annual Report [2]) this state was described to deexcite via an E1 transition of 80 keV. This parity change was not verified until now using precise lifetime measurement and it contradicts our previously mentioned estimation from 128I, where the 10^+ state deexcites on 9^+ via a possible fast M1 transition.

Following the same pattern, it could be interesting to also investigate the lifetime of the $8^- 411$ keV state in 126I and include it in our systematics. Partial level schemes of 128I obtained at Bucharest Tandem accelerator in the previous experiment and the level scheme of 126I [2] are shown in Fig.2.

The experiment results regarding the lifetime measurements can clarify the level scheme of the 126I nucleus and also to bring a precise value of the lifetime of the 8^- state from 128I.
Figure 3: Partial level schemes of 128I obtained at Bucharest Tandem accelerator in the previous experiment and the level scheme of 126I [2].

2 The experiment

We suggest to use the 6Li + 124Sn fusion evaporation reaction at 30 MeV to populate excited states in 126I and the 7Li + 124Sn reaction at 27 MeV to populate excited states in 128I.

The Bucharest detectors array dedicated for nuclear spectroscopy measurements consisting of eight HPGe and seven LaBr$_3$ scintillator detectors will be used. Several measurements were done recently with this setup, which revealed its potential for lifetime measurements [4]. Since properties of nuclear states in doubly-odd nuclei are measured, it will be an important improvement the use of three planar HPGe detectors that will be added in the set up in this experimental campaign.

The trigger condition for the acquisition system should be: at least two LaBr$_3$ detectors fired in coincidence with any HPGe detector. Thus, in the analysis triple $\gamma\gamma\gamma$ coincidences.

The lifetime of the 10$^+$ states in 128I and 126I will be estimated using centroid shift method.

3 Beam time request

Based on our previous measurements we ask for four days for lifetime measurement of 328 keV state from 128I following the 124Sn(7Li,3n) reaction and another four days for lifetime measurements of (10+) 1433 keV state from 126I following the 124Sn(6Li,4n) reactions. 6Li ions should be accelerated to 30 MeV and 7Li ions at 27 MeV. The measurements will be performed with the γ array already described, installed on the first beam line.
Figure 4: CASCADE calculation of the excitation functions for the 6Li + 124Sn fusion-evaporation reaction.

References

