Analysis of deuteron elastic scattering and induced activation on light and medium nuclei for IFMIF EVEDA

Marilena Avrigeanu1, Wolfram von Oertzen2, Robin Forrest3, Aura Obreja1, Faustina Roman1, Vlad Avrigeanu1

1 EURATOM-MEDC Fusion Association, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest, Romania
2 Freie Universitat Berlin, Fachbereich Physik, 14195 Berlin, and Hahn-Meitner-Institut, 14195 Berlin, Germany
3 EURATOM-UKAEA Fusion Association, Culham Science Centre, Abingdon OX14 3DB, UK

INTRODUCTION

• Optical Potential - key ingredient of cross-sections calculations
• NO GLOBAL OPTICAL POTENTIAL (OP) for d + Nucleus (A<27)
(basis of TWS-ITM-004.05)
• COMPARATIVE ANALYSIS of global OMPs for d + 27Al, 54,56,58Fe, 63,65Cu, 93Nb:
Daehnick et al. (1980): A=27-238, E=11.3-90 MeV
Bojowald et al. (1985): 27Al, 93Nb, and 63,65Cu at E=58.7 and 85 MeV
• None of these global OMP describes data at E=15 MeV
• Semi-microscopic OMP by using realistic nucleon-nucleon interaction
Calculations of microscopic V_o optical potential (DF)
W_o and V_o components: local parameters based on data analysis
Data re-analysis with fixed W_o and V_o components
• Average of the local OMP parameters for d+27Al,54,56,58Fe,63,65Cu,93Nb:
Phenomenological OMP - cross-sections calculations
• Activation cross sections calculations for d+27Al interaction

Nuclear Model Calculations

OPTICAL MODEL: prime tool for all cross section calculations
Phenomenological OMP - global parameter sets: codes default
Microscopic OPs: reduced uncertainties

SCAT 2000 [O. Bersillon]
• pure elastic scattering OP analysis
DFOLD [M. Avrigeanu]
• double folding method
(nucleon, d, 27Al = TWA9-TTMI-004-D5)

FRESCO - H95 [B. J. Thompson]
• Coupled Reaction Channel
STAPRE - H95 (updated) [V. Avrigeanu, M. Avrigeanu]
• OMP: SCAT2000; GDH / EXCITON; Hauser-Feshbach
TALYS - 1.0 [A. Koning, S. Hilaire, M. Duijvestijn]
• OMP: ECIS97; EXCITON; Hauser-Feshbach

CONCLUSIONS

Starting point: available (d,d) and (d,p) data for $^{d^{27}}$Al,54,56,58Fe,63,65Cu,93Nb
poor description by global OMP parameter sets

Semi-microscopic OMP analysis
U = p_0(CD-Bonn)(charge) & p_0(charge) & Paris-NN
W_o, V_o phenomenological
improved agreement with data adding the dispersion corrections
Phenomenological OMP analysis for 27Al,54,56,58Fe,63,65Cu,93Nb
agreement with all available measured data
improved description of (d,d) data vs. TALYS default OMPs
improved description of (d,d) data vs. Daehnick+ and Bojowald+ OMPs
improved description of σ_{EL} data in comparison with ACSELAM library

Completion of d+27Al activation cross sections
OMP average parameter sets
Deuteron break-up mechanism contribution taken into account
Comparison of STAPRE-H / TALYS-1 activation cross secs.

NEED to UPDATE the ACSELAM library