IFIN-HH

Proposal for the TANDEM accelerator for the period May 2012 - September 2012

Search for particle-phonon couplings in ⁶⁵Cu by the incomplete fusion reaction ⁷Li+⁶⁴Ni

S. Leoni¹, A. Bracco¹, S. Bottoni¹, G. Benzoni¹, F. Crespi¹, L. Pellegri¹, V. Vandone¹
N. Mărginean², D. Bucurescu², Gh. Căta-Danil², I. Căta-Danil², D. Deleanu², D. Filipescu²,
I. Gheorghe², D.G. Ghiţă², T. Glodariu², R. Lică², C. Mihai², R.Mărginean²,
A. Negreţ², T. Sava², L. Stroe², S. Toma², R. Şuvăilă², N.V. Zamfir²
C.A. Ur³

A. Bruce⁴, O.J. Roberts⁴
P.H. Regan⁵, Zs. Podolyak⁵, P. J. Mason⁵, C. Townsley⁵

¹ Università degli Studi di Milano and INFN sez. Milano, Milano, Italy
² National Institute for Physics and Nuclear Engineering, Magurele, Romania
³ INFN sez. Padova, Padova, Italy
⁴ University of Brighton, UK
⁵University of Surrey, UK

Spokesperson: S. Leoni Contact Person: N. Mărginean

Abstract

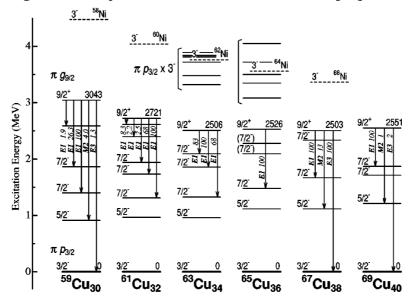
We propose the measurement of excited states in 65 Cu populated by the incomplete fusion reaction of 7 Li on 64 Ni at energies around the Coulomb barrier. The gamma transitions will be measured using the Bucharest in-beam fast timing array of 8 Ge detectors and 12 LaBr3(Ce) scintillators, possibly in coincidence with the alpha particles detected with 2 E-DE Si telescopes. The aim of the experiment is two folds: in first place we intend to acquire experience in using incomplete fusion reactions with the weakly bound 7 Li projectile. Such reactions are in fact considered a very powerful spectroscopic tool to get access to highly excited states in n-rich nuclei, at moderately high spin. For this purpose, an excitation function will be performed, by varying the energy of the 7 Li beam between 16 and 22 MeV, in steps of 2 MeV. After determining the optimal beam energy for the population of excited states in 65 Cu an in-beam spectroscopy study of this nucleus will be performed. In particular, we intend to focus on particle-phonon coupled states, arising by coupling the unpaired $p_{3/2}$ proton to the 3^{-} octupole phonon of the 64 Ni core. By applying fast-timing techniques, the lifetimes of the states of interest will be determined, therefore allowing to estimate their collectivity and to compare with particle-phonon calculations in the weak-coupling limit.

We request 9 days of beam time: 2 for excitation function and 7 for in beam spectroscopy.

Physics motivation

The understanding of particle-phonon and phonon-phonon couplings is a very important issue, since this phenomenon is at the basis of fermionic many-body interacting systems, both in solid state and nuclear physics. In nuclear physics, the coupling between a particle/hole and a vibration is a key ingredient to explain important phenomena, such as the observed reduction of spectroscopic factors, the anharmonicity of vibrational spectra, the damping of Giant Resonances, etc. [1,2].

The best place to search for particle-phonon coupled states is around magic or doubly magic nuclei, where collective vibrations are expected to be quite robust. Experimentally, several indications have been found of discrete states of particle-phonon nature, mostly in medium-heavy nuclei [1], but only in few cases clear evidence has been obtained. In addition, it is still an open question whether states of particle-phonon nature can be considered a general nuclear property, down to the region of medium-light systems with reduced collectivity.


In recent works, evidence has been found for particle/hole-phonon coupled states in 47,49Ca, based on the 3^{-} octupole vibration in 48 Ca [3,4]. Furthermore, in 67 Cu a fast E3 transition from the $9/2^+$ state to the $3/2^-$ ground state with B(E3)=17(2)W.u. has been measured in a recent 64 Ni(α ,p) 67 Cu experiment performed in Bucharest [5], suggesting a strong particle-octupole phonon coupling with the 3⁻ phonon of ⁶⁶Ni. In all cases, the key information has been the measurement of the lifetime of the states, which has contributed to shed light on the structure of the levels. The n-rich Cu isotopes are particularly interesting in this context, since they provide valuable information on nuclear structure above the Z=28 shell closure. In addition, they also present a very peculiar situation, which has been tentatively interpreted as a partial breaking of the particle-phonon coupling model. Figure 1 shows a systematic investigation of the first excited 9/2+ levels in the odd ⁵⁹⁻⁶⁹Cu isotopes and their g-ray branching [6]. Dashed lines indicate the energy of the 3⁻ octupole in the corresponding Ni isotopes. The experimental data on the (a,d) and (³He,d) proton stripping reactions shows that in all odd mass Cu isotopes the first 9/2+ states around 2.5 MeV have large spectroscopic factors [7,8], consistent with a single-particle character. On the contrary, inelastic scattering of (α, α') , (e, e') and (p, p') [9-13] give, at least in the case of 63Cu and 65Cu, a significantly large E3 strength (~20 W.u.), compatible with a coupling with the 3- phonon of 62Ni and 64Ni, respectively. On the other hand, candidates for $\pi p_{3/2} \otimes Ni(3)$ multiplet were also observed at higher energies, above 3 MeV, in the excitation energy region of the 3-phonons of Ni. This situation is rather contradictory since it cannot be explained within the usual weak-coupling particle-octupole phonon model. Therefore, further detailed investigation is needed, both theoretically and experimentally. In particular, a firm spin assignment for the states of the multiplet around 3 MeV should be established, together with a more direct determination of the structure of these states (including the $9/2^+$), as follows from lifetime measurements.

In this proposal we intend to focus on 65 Cu, which is one proton away from the semi-magic nucleus 64 Ni (see Figure 1). In the recent work of Chiara et al. [14], the decay from the $9/2^+$ state has been studied in details by a deep inelastic reaction: four decay branches have been observed, including a very weak, direct decay to the ground state. This $9/2^+$ state has been suggested to arise from a weak coupling between a proton and the 64 Ni core. No lifetime measurement has been performed for this state, and no evidence has been found for the states, around 3 MeV, previously interpreted as the $\pi p_{3/2} \otimes Ni(3^-)$ multiplet.

We therefore propose to further investigate the g-decay of this nucleus, by employing a reaction mechanism that is expected to favor the population of excited states based on collective core excitations, such as incomplete fusion of a ⁷Li beam on a ⁶⁴Ni target, at energies

around the Coulomb barrier. Incomplete fusion reactions are in fact considered a very powerful, little exploited, tool to get access to highly excited states at moderately high spins in n-rich nuclei [15,16].

The aim of the experiment is two folds: first, by performing an excitation function (varying the 7 Li beam energy between 16 and 22 MeV), we intend to study the properties of the reactions and to determine the best experimental conditions for the population of excited states in 65 Cu. Then we intend to perform a lifetime analysis of the $9/2^{+}$ state. If this state has a similar octupole character of the 3^{-} state in 64 Ni, as suggested by inelastic scattering reactions [10], its lifetime should be of the order of ~ 20 ps (assuming the decay branching reported in Ref. [14]). Such a value can be determined by fast-timing techniques, which are able to provide information in the range of tens of picoseconds to few nanoseconds [17].

Fig. 1. Energy levels and g-ray branching for the first excited $9/2^+$ states in ⁵⁹⁻⁶⁹Cu isotopes. The 3-octupole states in the corresponding Ni isotopes are indicated by dashed lines. In the case of ⁶³⁻⁶⁵Cu, candidates for $\pi p_{3/2} \otimes Ni(3^-)$ states are also given [6].

The theoretical interpretation of the experimental results will be done in collaboration with our colleagues Gianluca Colò and Pier Francesco Bortignon of Milano University. It will be based both on a phenomenological approach (originally developed by Bohr and Mottelson [1,3,4]) as well as on a recently developed fully microscopic calculations performed within a self-consistent framework. The latter will be able to provide an exact treatment of the coupling vertex, making use of the whole phonon wave function [18].

It is important to note that the present study forms part of a wider program aiming at a systematic investigation of particle-phonon coupled states in different region of mass and N/Z ratio. It will contribute to extract a precise, quantitative assessment on the coupling strength between particle/hole-states and the low-lying phonon core excitations by comparison with other cases, going from stable to exotic systems. It will also shed light on the observation of an apparent anomalous particle-octupole phonon multiplet, earlier reported in ⁶⁵Cu [13].

Experimental details

We propose to use the incomplete fusion reaction ^7Li on ^{64}Ni at beam energy of 22 MeV, which is $\sim\!30\%$ above the Coulomb barrier. The alpha particles resulting from the incomplete fusion will be detected by 2 Si E-DE telescopes of the ISIS array [19] placed in close geometry around the target to grant 10% detection efficiency. The gamma rays coming in coincidence will be measured using an array of 8 HPGe detectors and 12 LaBr₃ scintillators, with absolute detection efficiency at 1.33 MeV of $\sim\!0.8\%$ and $\sim\!1\%$, respectively.

A reliable estimate of the 64 Ni(7 Li, $\alpha 2n$) 65 Cu reaction cross section is not a trivial task. However, based on previous experiences [20] and on simple estimates one can expect a cross section $\sigma \sim 50$ mb, mostly peaked at forward angles, around $40^{\circ}-50^{\circ}$.

For the excitation function study we plan to employ a 64 Ni target of 2 mg/cm² on a Au backing of 20 mg/cm², in order to fully stop the recoiling 65 Cu isotopes. This will allow to easily identify the γ lines of 65 Cu and to study the population of its excited levels. Assuming a 7 Li beam of 3 pnA, we expect to measure \sim 15 events/s of α - γ coincidences both with the Ge array and the LaBr₃(Ce) array. This will be sufficient to perform an excitation function in 2 days, varying the 7 Li beam energy between 16 and 22 MeV, in steps of 2 MeV.

After determining the optimal beam energy for the population of 65 Cu, we intend to use a 64 Ni target with a thickness of 15 mg/cm², to perform a spectroscopic study of 65 Cu. In order to determine the lifetime (or a limit) of the states of interest, triple gamma coincidences will be needed, since one transition observed in the Ge array will be used as a gate (to cleanly select the decay path) and γ - γ coincident transitions detected in the LaBr₃(Ce) array will be needed to construct the time difference spectrum, according to the method described in Ref. [17]. Assuming a population of 10% for the 9/2+ state of interest, a total of \sim 6000 triple gamma coincidences will be collected in 7 days, assuring a meaningful analysis of the time difference spectrum. As a by-product, the use of a thick target will also offer the possibility of performing DSAM measurements for transitions with a lifetime shorter than 1 picosecond.

Our total beam-time request is 9 days

(2 for the excitation function and 7 for in beam measurement)

References

- [1] A. Bohr, B.R. Mottelson, Nuclear Structure, vols. I and II, W.A. Benjamin, 1975.
- [2] P.F. Bortignon, A. Bracco, R.A. Broglia, Giant Resonances: Nuclear Structure at Finite Temperature, Harwood Academic Publishers, New York, 1998.
- [3] D. Montanari et al., Phys. Lett. **B 697**(2011)288.
- [4] D. Montanari et al., submitted to Phys. Rev. C.
- [5] C. Nita et al., to be published.
- [6] M. Asai et al., Phys. Rev. C62(2000)054313.
- [7] D. Bucurescu, M. Ivascu, G. Semenescu, and M. Titirici, Nucl. Phys. A189(1972)577.
- [8] R. M. Britton and D. L. Watson, Nucl. Phys. A272(1976) 91.
- [9] B. G. Harvey et al., Nucl. Phys. **70**(1965)305.
- [10] A. L. McCarthy and G. M. Crawley, Phys. Rev. 150(1966)935.
- [11] Y. Iwasaki et al., Phys. Rev. C 20(1979)861.
- [12] A. A. C. Klaasse and V. Paar, Nucl. Phys. A297(1978)45.
- [13] A.G. Hartas et al., Nucl. Phys. A279(1977)413.
- [14] C.J. Chiara et al., Phys. Rev. C 5(2012)0234309.
- [15] R.M. Clark et al., Phys. Rev. C 72(2005)054605.
- [16] G.D. Dracoulis et al., J. Phys. G: Nucl. Part. Phys. 23(1997)1191.
- [17] J.-M. Régis, G. Pascovici, J. Jolie, M. Rudigier, Nuc. Inst. Meth. A622(2010)83.
- [18] G. Colò, H. Sagawa and P.F. Bortignon, Phys. Rev. **C82**(2010)064307.
- [19] E. Farnea et al., Nuc. Inst. Meth. A400(1997)87.
- [20] Pfeiffer et al., Nuc. Phys. A206(1973)545.